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Curiosity

1895, Pierre Curie (Nobel Prize 1903) finds that heating a magnet can cause it to lose its
magnetic property, i.e., cause a “phase transition”.

o But Why?

Model

1920 - Lenz introduced a model to explain this phase transition.
1925 - Lenz’s student, Ising, solved a special 1-D case of the model
1940 - Onsager (Nobel Prize 1968) solves the 2-D case.

2000 - Istrail shows, via a Max-Cut formulation, that the much sought after 3-D case is
NP-Complete

General lesson

1971 - Wilson (Nobel Prize 1982), Universality: Systems with same number of
dimensions and symmetries go through identical phase transitions.

Ising is the simplest model in theory space to captures properties of all sorts of
interacting systems like magnets, water etc.

Carnegie Mellon University ﬂ
Teppe r SChOOl Of BUS'HeSS William Larimer Mellon, Founder 3 C PD
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7. Ising Model

Mental model and applications
i i i :r1=.1:§’=:|.._.~-,¢l - ”;"’

N
$1=0s2=0 s, =0 H— _Z [J-*,S.H L HY +-“.u]

2

= v — —ﬁH(X.p)
Z & Z e Y -1 if z=0
o

z)=4{+1 if z=1
0 otherwise

i Z =YY - Y exp (B L [rtsiston + g2t 2e00])

. . . [1] https://en.wikipedia.org/wiki/lsing_model
Carnegie Mellon University
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sing Model

Mathematical definition
H(o) = — Z(z‘j)eE(G) Jijoioj — szev hio;

o H Energy functlon or Hamiltonian

o o; € {—1,+1}V(® Spins for each site in the graph or lattice
o G=(V, E) Graph or Lattice defining the interactions

o J Magnetic moment

(> 0, ferromagnetic interaction

o Jij{ < 0, antiferromagnetic interaction
| = 0, nointeraction

(> 0, site wanting to align with external field Zeeman term, external
o h; { <0, site wanting to anti-align with external field longitudinal term, bias,
| =0,Nno external influence on site

(Quadratic)
Couplings

o Configuration (Boltzmann) probability: P(c, 8) = e PH) / Z(pB)
o Inverse temperature: = (k:BT)_1
o Partition function: Z(8) = Y _ e ##) (normalization in probability)

Carnegie Mellon University
Tepper School of BUSINESS  wittiam Larimer Melion, Founder > __Q\C P:D
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; Ising Model - Solutions

Solutions P i
o 1d with circular or free boundary conditions, f i
without external field. P I :
— Ising solution: No phase transition f
o 1d with external field. | !!
— Phase transitionat y _ » down sin
o 2dcase
— Onsager solution: Phase transition AAERA
M =+, 0i = (1 — [sinh 28Jyert sinh 28.J40,] )18 ~;.¢<.;1$ietlcnd§;==:==== s
0 3d+ case Szl ||EEEEEEEEE
— If graph is nonplanar, then the problem is e e
NP-complete (proof via MAXCUT) .
— Mean-field approximation (assume continuity o
in interactions) § =
But what does it mean to solve this problem? i AT
For some: compute meaningful statistical properties Vs T
For others: What are the values of the spins? IR
Carnegie Mellon University 2] PB i, s auingam/om Bgam B " 2gnetsm-him!
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V}/Ismg Model - Combinatorial
/ Optimization

Starting from Ising Problem without external field

g Jzy 00

(ij)€E(G
SR TR
(if)eE(V") (ij)eE(V (if)ed(V™)
(1j)eE(G (i5)ed(V™)
where the set J/+ (/) are all the vertices withg = +1 (00 = —1) and their

boundary (cut) is denoted by §(V 1)
Now consider that the graph has welghted edges VVU
Then the size of the cutis [6(V )| = Z( sty Wi

Therefore we obtain H( ) = Z(ij)EE(G) I/Vij — 4|5(V+)|

When minimizing the Ising model, we are finding the maximum cut of the graph

min, H(o) = Z(z’j)EE(G) Wij + 4max, [6(V™"))

[ ] https://www.electronics-tutorials.ws/electromagnetism/magnetism.html
2] http://lwww.irm.umn.edu/hg2m/hg2m_b/hg2m_b.html

Tepper SChOOl Of BUS'HeSS William Larimer Mellon, Founder ! C PD
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/ Optimization

Starting from the minimization of the Ising Model

minge( 41y H(0) = minge g 11y D isepe) Jii%i0i + 2iev(e) hioi
We can directly pose this problem as an Quadratic Unconstrained Binary Optimization
(QUBO). The next lecture is going to be on this!

minge( 1 41} Z(z’j)eE( G) Jijoioj + ZzeV hio; =
minxe{o,l}" Z(ij)eE(G) T QijT; + ZieV(G) Q'n T; +C

with Qi; = 4Jij, Qii = 2hi — 3 5cy () (2055 + 2Jji), ¢ = D Jig — 2iev(e) b

Although this is already solvable using INLP programming tools, we can reformulate it as
a ILP by adding a variable ;5 — Z;<X; whose nonlinearity can be posed a linear
inequalities.

Experimental results show this is the most efficient ILP formulation of the Ising problem
minye o 13" E(ij)eE(G) Qijwij + ZieV(G) Qiizi +c¢

s.t. Tij > x; + Tj — 1,mij < Tiy Tij < Z; \VI(ZJ) € E(G)
T; € {0, 1} Vi € V(G),a}” c {0, 1} V(’L]) € E(G)

. . . 1] Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver
Carnegle Mellon UHIVCI'Slty ¥o]r the) unc%réstramed quadratic O% problem. Mzgthe(r]natlcal Prggr%mmlng 09(1)

' (2007) 551
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; Ising problem as IP

Let’s go to the code

https://colab.research.google.com/github/bern
alde/QulP/blob/master/notebooks/Notebook%2
04%20-%201Ising%20Model.ipynb

Carnegie Mellon University
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https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%204%20-%20Ising%20Model.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%204%20-%20Ising%20Model.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%204%20-%20Ising%20Model.ipynb

g/Metropolis-Hastings algorithm

Monte Carlo methods

Algorithms relying on random number generation. e

1. Define domain of possible input.

2. Generate those inputs following a probability
distribution.

3. Perform deterministic computation on the inputs.

4. Aggregate the results. ] 1 /

Markov-chain Monte Carlo

Generate a target distribution by sampling a Markov- g ya K
chain with equilibrium distribution being the target. ;

-2 0 2 4 4 -2 0 2
1000 samples 5000 samples

P\

g =
S T

Metropolis-Hastings . :
We want to approximate a distribution P(il?) using an initial function f(w)
Given initial function f(z)and a given point &; in iteration %
1. Compute a new point to evaluate I from an arbitrary probability density Q(Z|z;)
2. Calculate an acceptance ratio of that point based on o« = f(z)/ f(z;)
3. If a <Rand[0,1],z;,1 := Z, €lse Li+1 += Ly

Carnegie Mellon University El hiosy/on wikibedia.org/wikiMankov. chan. Mants. Carlo

3] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, A%usta H Telle,' d
wardTeller. Equation of state calculations by fast computing machines.The Journal o em@ PD
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7. Ising Model - MCMC

Ising model as Markov-Chain

The immediate probability P(a°, 8) = e #H(e") / Z(B) of transitioning to a future state of
depends only in the current state o = [0%,- -+, 0%

Given single flip dynamics, we can jump from any state to another.

Metropolis-Hastings Monte Carlo Algorithm for
Ising Models ' . .
1)  Start with a known configuration,@" = (07, 0N]
corresponding energy, H(a") and
temperature value T = (kBﬁ)—l
2) Randomly change the configuration
- Add small displacement g7 = o + §
) Calculate new energy value H(o”)
Compare to energy at previous position
- IfH(o?) < H(6") keep new position
- IfH(o7) > H(o') keep new position if
Boltzmann factor for transition satisfies
5) Repeat 2) - 4)exp |- Y88 > Rand [0, 1] werereem

. . o 1] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated
Carnegie Mellon University e e S aab8) a1 580 1083, P y

Teppe r SChOOl Of BUSIﬂeSS William Larimer Mellon, Founder 11 C PD

(©)

300




A . "’

2

Simulated Annealing

Concept coming from annealing in metallurgy
Slow cooling allows for perfect crystals (minimizing energy)

Simulated Annealing provides a temperature schedule
for the Metropolis-Hastings method

1) Start at effective high temperature and gradually
decrease the temperature by increments until

is slightly above zero

2) At every temperature the Metropolis algorithm is run
in a nested-loop

metastable
crystalline

Potential energy ——

Normal coordinate —>

E= 852 T=125

Interesting behavior:

- “Divide-and-conquer”: Big features are solved early in |
the search and small features later while refining :

- Ability to escape local-minima "

- Guaranteed to reach lowest energy if temperature is
lowered slowly enough

. . o 1] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization b S|mu?at(azd ter e
Carnegie Mellon University gzr!nealln "Soiance 320(4598):67 1680, 1983 P y

Tepper SChool Of BUSINESS  whiasiiamscritye st s CAPD



https://www.esrf.eu/news/general/phase-change-materials/index_html

g/Simulated Annealing Results

For Traveling Salesman Problem (TSP)

Given a set of cities, an agent needs to visit them all once, reducing the total distance
traveled.

- The most famous combinatorial optimization problem
- Back when simulated annealing was proposed was able to

solve problems up to 6000 cities whereas other
methods could only handle 30 cities
- The displacement () is given by Lin and Kerrighan heuristic

a T | \ T
u B
L v
B N
. . . 1] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated
Carnegle Mellon Un1vers1ty .[g\r!ne%cl)ing.gcri):ngg,220(4%@3{:67631616’8%?198%r.|0 ecenl. Dpimization by simtiate
2] Helsgaun, Keld. "An effec

ive implementation of the Lin—Kerni%h_an travelin

T S h | -I: B ' euristic." European Journal of Operational Research 126.1 (2000): 106-130. g saIesmarB C PD
e p pe r C OO O US | ﬂeSS William Larimer Mellon, Founder
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; Simulated Annealing

Let’s go back to the code

https://colab.research.google.com/github/bern
alde/QulP/blob/master/notebooks/Notebook%2
04%20-%201Ising%20Model.ipynb

Carnegie Mellon University

Tepper SChOOl Of BUSIHESS William Larimer Mellon, Founder 14 C PD



https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%204%20-%20Ising%20Model.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%204%20-%20Ising%20Model.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%204%20-%20Ising%20Model.ipynb
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; Advanced Simulated Annealing

As seen before, the displacement () is key to performance.
In naive Simulated annealing the displacement can be a “single flip” § : o; — —o;
o For hard optimization problem this might require exponential time to converge.

What if the update happens between “clusters” of spins?

o This needs to be done carefully to guarantee energy conservation and ergodicity
— In this context that one can reach any state from another given the
Markov-chain
o Generate different replicas of the system at different temperatures and after certain
Metropolis updates, the temperatures of two replicas 71, T2 are exchanged if

P(ry <+ r9) = min{1, exp[(B1 — B2)(H(c}) — H(c?))]}

- Two temperatures are always exchanged if a replica at higher temperature has
a lower energy than a replica with a lower temperature.

- Otherwise, the exchange of the two temperatures is either accepted or
rejected using the random number between 0 and 1

. . . 1] S. Mandra, Z. Zhu, W. Wang, A. Perdomo-Ortiz, H. G. Katzgraber.
Carnegle Mellon UIIIVCI'Slty Et]rengths and weaknesses of gveak-strong cluster problems: Agdetailed

proaches. Physical Review A, 94(2), 022,337, 2016.

Teppe r SChOOl Of BUSIﬂeSS Wial iam Larimer Mellon, Founder
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How to evaluate heuristics?

—
P

This is not a trivial question given that methods may have several parameters to tune,
run on different hardware or there is no clear absolute metric.

Important metrics are time and solution quality.

Given an algorithm that runs several times, you would like to know how much should it
take for you to get a solution with certain success probability.

Metric: Time to solution of expected runtime
log(1—s)

TTS(m) — mT(m) log(1—p(m))

0 77 number of times run, or sweeps in Simulated Annealing

0 8 success probability after 77 sweeps

o p(m) probability of success to achieve (usually high s = ().99)
o 7(m)time it takes to perform a single sweep

o m7(m) Time the algorithm runs

It's going to be useful once benchmarking Quantum methods

1 Venturelli, Davide, et al. "Quantum optimization of fully connected spin glasses." Physical

Carnegie Mellon University RLviewse 50185 555646
Teppe r SChOOl Of BUSIﬂeSS William Larimer Mellon, Founder 16 C PD
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; Time to solution

Let’s go back to the code

https://colab.research.google.com/github/bernalde/QuiIP/blob/ma
ster/notebooks/Notebook%204%20-%20Ising%20Model.ipynb

Logical SKModel
10 - - - . 3 :
_ Simulated annealing expected runtime of
Y random Ising N=100 with varying schedule and sweeps
e 3! s ;
£ 10’ fe 1 ‘\_ ‘“? il ‘1 ~—— linear
8 N=26 ra¢ . geometric
Z N-21 ‘e . |
‘é a .\. 2(] - T 10 ‘
SR | N=16 b=
= L
S N=12 sa: E
2 S €
z l(]] .\- 3 @ 2
7 N= 41 w ©
= u
by
. &
10f : 10* 1

0 5 10 15 20

Number of Sweeps

Figure 5: Expected computational time T,,, as in
. 2 = T

Eq.' (4): by varying t.he number of sweeps for t’he 5 10 15 20 2% 30

logical SK model, at different number of logical spins Sw

N. The optimal number of sweeps (speed) is defined as the e

number of sweeps which minimizes T,.,.

1 Venturelli, Davide, et al. "Quantum optimization of fully connected spin glasses." Physical

Carnegie Mellon University RLviewse 50185 555646
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https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%204%20-%20Ising%20Model.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%204%20-%20Ising%20Model.ipynb
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; How to compare heuristics?

Several heuristics available for Max-Cut and QUBO

They compared 37 heuristics to solve these problems on the same computer, with similar
implementation on an available library of problems

Description
Problem | Name | Count Nodes | Density Reference

G-set 71 800-20.000 | 0.0%-6.0% | Helmberg and Rendl (2000)
Max-Cut | Spin Glass 30 125-2.744 0.2%-4.8% | Burer et al. (2002)
Torus 4 512-3.375 0.2%-1.2% | 7" DIMACS Implementation Challenge
GKA 45 21-501 8.0%-99.0% | Glover et al. (1998)
QUBO Beasley 60 51-2,501 9.9%-14.7% | Beasley (1998)
P3-7 21 3.001-7,001 | 49.8%-99.5% | Palubeckis (2006)
Trained a decision tree to help users decide Evolutionary Algorithm Tabu Search
which heuristic to use in their problem. "
“We [Dunning, Gupta, Silberholz] evaluated = ®
each of the 37 heuristics over all 3,296 g s 3 e
problem instances in the expanded instance £ . £
library, consuming 2.0 CPU-years of A C .
processing power (20.1 CPU-days per A )
heuristic), taking 12.4 days over the 60
h 3 8 0 hours er heurlstlc) and Number of Nodes Number of Nodes
machines (8. p , Good Bad

costing $1,196 ($32.3 per heuristic)”

. . o [1] Dunning, lain, Swati Gupta, and John Silberholz. "What works best when? A systematic
Carnegie Mellon University evaluation of helristics for Max-Cut and QUBO." INFORMS Journal on Compuing 30.3 (2018):

608-624. _ .
Tepper School of BUSINESS  wiitkan Lasaner Stelion Fomder 18 CAPD




AR

>\

How to compare heuristics?

Several heuristics available for Max-Cut and QUBO

Solution (% Avg. Rank
i s
5 st-0f-5
Paper Type Short name Description Space Req. Heuristic n Deviation
Alkhamis et al. (1998) Q ALK98 Simulated annealing O(n+m) BURO2 0.2 10.7
Besle (1900) @ BEAUSE Spuindsomeatn Chen) FESO2GVP 01 10.
Burer et al. (2002) M BURO2 Non-linear optimization with local O(n+m) :‘), 09 ~D -9 = o
ek g | 63
Duarte et al. (2005) M DUAOS S:::;lu: algorithm with VNS as local O(pn + m) l’)\Lﬂ-—l'll‘z 0:3 8_:—’;
FESO2G GRASP with local search Oln+m) B’::}\.‘)S Is 2.1 16-6
FES02GP  GRASP with path-relinking O(An +m) l:l; 1‘0 . 1.2 13.1
Festa et al. (2002) M FF,SU‘ZY \N\ . o O(n+m) F h§02(. 1.1 18.2
FES02VP VNS with path-relinking O(An +m) MERO4 0.5 8.6
FES02GV  GRASP with VNS local search O(n+m) PALO4AT1 1.9 15.2
FES02GVP  GRASP & VNS with path-relinking O(An +m) a .
Glover et al. (1998)  Q GLO98 Tabu search O(tn + m) Q}Eggg%‘?‘h— 82 i?g
Glover et al. (2010)  Q GLOIL0 Tabu search with long-term memory O(An +m) '\lER();L'qK 0"—- 1'3.:3
Hasan et al. (2000) HASOOGA  Genetic algorithm O((p+7)n+m) - g ‘)" >
agan oL aL (2 Q  HASO0TS Tabu search O(n+m) PALO4TS 2.0 18.6
Katayama et al. (2000) Q KAT00 Genetic  algorithm  with k-opt local O(pn+m) | '{ 'l:; ":')‘; ('_’ ‘:’ :r" 3
search . S R 2.0
[Katayama and Narihisa (2001)  Q KATO1L Simulated annealing | Ofrn+m) 1:1\L04'l.4 2.6 21T
Laguna et al. (2009) M LAGOICE  Cross-entropy method O(5.87pn" +m) (:l:(.)lﬂ - 1.3 16.6
T i i LAGO9HCE Cross-entropy method with local search  O(0.031n” 4 m) FES0O2V 0.9 13.8
Lodi et al. (1999)  Q LODY Genetic algorithm Olpn +m) KATOO 0.9 16.9
Li et al. (2010)  Q LUIO Genetic algorithm with tabu search O(pn +m) FESO2VP 0.7 12.4
MERYLS  Genetic algorithm, with crossover and O(3n 4+ m) PALO4AMT 28 24.1
Merz and Freisleben (1999) Q local search MERO2GR 2:8 24:3
MER9IMU  Genetic algorithm, with mutation only  O(8n + m) GLO98 1.5 23.4
MER99CR  Genetic algorithm, with crossover only  O(8n 4 m) H’ \Q(.]OTS‘ l.‘] ;0,’
MERO2GR  GRASP without local search O(n+m) Hj\QOO( ,‘}\ 1‘6 ;Oq
s Yeicloben (2002 MERO2LS1 I-opt local search with random restarts ()[‘n Kl m.) ~ B Pt st
Mecxar Frlsiai () 1) MERO2LSK  k-opt local search with random restarts  O(n+m) MERO2LS1 2.6 25.1
MERO2GRK k-opt local search with GRASP Ofrn+m) PAROR 21 17.9
Merz and Katayama (2004) Q MERM Genetic  algorithm, with k-opt local Ofan +m) | KATO1 2.1 26.3
search DUAODS 14 174
PALO4ATT  Tabu search O(n+m) LOD99 4.9 30.2
PALO4AT2 Iterated tabu search O(n+m) LAGOOHCE 1.6 20.4
! AGDE ) H 20.
Palubeckis (2004 C PALO4T3  Tabu search with GRASP O(n+m) = 3 =
SHImeckiRt ) ! PAL04T4  Tabu search with long-term memory O((A+~)n+m) | Bh‘\!‘)“}bf‘\ 3}% 30.8
PALOATS  Iterated tabu search O(n+m) PGP I 129 54.D
PALOMMT  Tabu search O(n+m) Kﬂ:‘!‘z‘)‘)_\‘l‘l 21.7 3«”) i
Palubeckis (2006)  Q PALOG Tterated tabu search O(n+m) LAGO9CE 29.2 36.9
Pardalos et al. (2008) Q PAROS Global equilibrium search =y

[1] Dunning, lain, Swati Gupta, and John Silberholz. "What works best when? A systematic
eé%"éaztf” of heuristics for Max-Cut and QUBO." INFORMS Journal on Computing 30.3 (2018):
2[1 https:'//g[thub.com/MQLib/MQLib
iam Larimer Mellon, Founder
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