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Important Previous Lectures

Ising Model and QUBO problems Quantum Annealing, Quantum-Inspired Heuristics, | Introduction to Quantum Gates and Circuits
. Benchmarking, and Parameter setting
Lecture 08 Lecture 9 Lecture 11
09.28.2022 10.03.2022 2022.10.10.

Two ways to execute quantum algorithms: ANALOG or DIGITAL

ANALOG: the algorithm consists of a “schedule” for time-
dependent signals, corresponding to Schroedinger Evolution

DIGITAL: the algorithm 1s “clocked”: decomposed into
individually calibrated gates that are acting on k-qubits at a time
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High level operation of a basic QPU

Initialization of a
qubit register

|0000....)

The initial reset of the
computer is an
irreversible operation
that dissipates heat

Coherent Quantum
Operations

Up...UsUoU; ] 0000....) »

. At
[/ (At)) = T exp (—i f L) dt') ' (0))
h 0

The operations are unitary schroedinger evolutions “gates”
of single and two qubit gates (but there is noise).

Reversible, zero dissipation.

Operations “use” entanglement, superposition, interference,
tunneling etc.

Q©

Electrical & Computer

ENGINEERING

<y TEPPER

Measurement of aregister in
the computational basis

Poo.oo |0000....00)
Poo.1o |0000....01)
Poo.1o |0000...10)
Poo.11 |0000....11)

P11 |11111...17)

The measurement can be repeated many times to
gather a statistics.

The distribution is used either as:

= Algorithm output

= Change parameters for gates for next iteration
= Error correction
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A Quantum Optimization Algorithm Template

1) Map a QUBO Objective function into Ising form and assign the logical identity of each spin variable to a qubit in the

processor.
xi = (si+1)/2 - |xi)

2) Apply single-qubit rotations to every qubit to put the state of the QPU in superposition of all possible solutions of the

optimization problem (Hadarmard gates) @

(3) Apply continuous signals, pulses of two level gates and single qubits rotations to change the state, having some smart

1 2"
| W) e = —Z |solution(n))
N qubits \/Z_N - n

: : 2
idea on how to increase the value of |‘Pn=target|

Algorithms are difficult to design because you are doing matrix multiplication with matrices of dimensions
2N x 2N nature does it for you! you don’t need to do it but good luck simulating it

(4) Measure the state, read the qubits (they are a single bitstring after measurement) and hope to find the target(s).

(5) Repeat the procedure many times and keep the best result.
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The Quantum Adiabatic Algorithm

AQC 1s based on a property of the time-dependent Schrodinger Albash, Lidar

SO . . Rev. Mod. Phys. 90, 015002 (2018)
equation — the «adiabatic theorem». https://arxiv.org/abs/1611.04471

Einstein's “Adiabaten hypothese”: “If a system be affected in a reversible adiabatic way,

allowed motions are transformed into allowed motions” (Einstein, 1914). - Apolloni 1989
Finnila 1994

Nishimori 1998
Brooke 1999

(1) Switch on a quantum interaction in your system

(2) Take the spectrum of possible energies of your quantum system as a function of the
degrees of freedom and set the state to a well-defined energy (not metastable states)
which is ranked n in order of magnitude (e.g., the second smallest)

(3) Do any Schrodinger evolution (no measurement! no noise!) that changes the energy
states «sufficiently slow».

(4) Measure the energy of the state. You will find with 100% probability that the energy is
ranked also n

Fahri 2001

Adiabatic evolution (e.g., Slow Schrodinger) preserves the energy ranking of your system.
The smallest energy state (ground state) also maps into the ground state at the end.

IDEA: map objective function into energy. Start from easy problem —
to solve with known solution and modify slowly to difficult. Measure Adiabatic evolution
unknown solution
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Solving ISING/QUBOs using Quantum Computing - How?

Adiabatic Quantum Computing

1. Write objective function into energy of a Quantum System (ISING=QUBOCMINLP).
2. Start from easy problem to solve with known solution and modify slowly to difficult.
3. Measure unknown solution

* Property of time-dependent Schroedinger equation — the «adiabatic theoremy.

Using different models of Quantum Computers
*  Gate-based computers
— For solving QUBOs, we can use algorithms like:
* Quantum Approximate Optimization Ansatz (QAOA)
* Variational Quantum Eigensolver (VQE)
— For optimization, algorithms can be understood as discretized adiabatic computation
— IBM/Google/Rigetti/IonQ/Quantinuum quantum computers are gate-based
*  Quantum annealers
— They run a single quantum algorithm, quantum annealing
— Finite temperature implementation of adiabatic quantum evolution
— Analog computation
— D-Wave quantum annealer is the best-known example
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Quantum Approximate
Optimization Algorithm
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QAOA Tutorial Outline

" Quantum Approximate Optimization
Algorithm: review and status

READING LIST

= Quantum Approximate Optimization with Hard

and Soft Constraints. Hadfield, S., Wang, Z., Rieffel, E. G.,

O'Gorman, B., Venturelli, D., & Biswas, R. (2017, November).
In Proceedings of the Second International Workshop on Post Moores Era

" The «Quantum Alternating Operator Ansatz Supercomputing (pp. 15-21). ACM.
* Mixing Operators = From the quantum approximate optimization
= Examples algorithm to a quantum alternating operator

Ansatz Hadfield, S, Z. Wang, B. O'Gorman, E. G. Rieffel, D. Venturelli,
and R. Biswas. arXiv preprint arXiv:1709.03489 (2017). Algorithms (2019).

* Compiling and Executing * Best Paper Award MDPI Algorithms
= The gate synthesis problem Journal
= Review of compilation methods
* Compiling framework in nearest-
neighbor architectures
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Quantum Approximate Optimization Algorithm
* QGate-based quantum algorithm for QUBO

optimization Fro—— " r— 5
. . . ; - - T , A -
« [teratively alternateg p times between applying two e % Le ™ ony]
sets of operators: Mixing and Phase Ci— /
. . . . S, e =1 —9 ,'.“'.-
Shifting/Driving LTl - 1 - N —
[+ — - —
— Induce entanglement and the objective function e N TR - R PR =V
» Requires as many qubits as the size of the problem —4 1 | .
» Requires polynomially many gates compared to the . JRRT B S e
. : - : > ol ¥ ot
problem size g ﬁ@“ N < | A
» Is an approximation algorithm: Y PN ¥ .= § v (ofof)]
o One Can theoretically prove tha’t SOlution tO any Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator
problem within a certain class using this algorithm Chrisapher Biduin, Lueas T Brady Abbinay Deshpande, Fangl L, Sephen Jodan. Alvey V. Gorankov, Chrsopher Momvee

Proceedings of the National Academy of Sciences Oct 2020, 117 (41) 25396-25401; DOI: 10.1073/pnas.2006373117

will always be in a range (approximation ratio) of
the true optimal

*  For MAXCUT of regular 3-degree graphs QAOA with p=1 has approximation ratio of 0.6942 vs. 2/3 of random guessing.
* For a satisfiability problem E3Lin2, QAOA with p=1 gave the best approximation ratio at the point.
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Origins of the QAOA

MIT-CTP/4610

A Quantum Approximate Optimization Algorithm

Edward Farhi and Jeffrey Goldstone
Center for Theoretical Physics
Massachusetts Institute of Technology
Cambridge, MA 02139

Sam Gutmann

Abstract

We introduce a quantum algorithm that produces approximate solutions for combinatorial op-
timization problems. The algorithm depends on an integer p > 1 and the quality of the approx-
imation improves as p is increased. The quantum circuit that implements the algorithm consists
of unitary gates whose locality is at most the locality of the objective function whose optimum is
sought. The depth of the circuit grows linearly with p times (at worst) the number of constraints.
If p is fixed, that is, independent of the input size, the algorithm makes use of efficient classical pre-
processing. If p grows with the input size a different strategy is proposed. We study the algorithm
as applied to MaxCut on regular graphs and analyze its performance on 2-regular and 3-regular

graphs for fixed p. For p =1, on 3-regular graphs the quantum algorithm always finds a cut that

is at least 0.6924 times the size of the optimal cut.

Fp(77/8) — <77:8| C |7>IB> MP Z Mp—l

Carnegie Mellon University

|/877> — Qp(ﬂa’Y) |8>
Qp(B,7) = Um(Bp)Up(vp) - - - Um(B1)Up(71)

),

M, = max F, (v, 8) lim M, = max C(z)

pP—00

v,8

() ENENERRNE

|

Up(m)

Un,j(B1)

Uni k(B1)

Umg+1(61)

Unr k+1(61)

<y TEPPER

Universities Space Research Association




Carnegie Mellon University
QAOA

1. Design a binary optimization classical Hamiltonian (“phase separation”)

2. Design a unitary operator that can connect and allow jumps between different
states (““mixing”)

3. Prepare a QAOA state for some parameters

18,7) = Qp(8,7) |s)
Qp(B,7) = Um(Bp)Up(7p) - - - Um(B1)Up (1)

4. Measure the state in the computational value and compute the exp. value of C(z)

Fo(v,B8) = (7, BIC v, B) M, > M,_,
M, = % F, (v, B) pli)rglo M, = max C(2)

5. Change the parameters if they are not proven optimal and repeat 3-4
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Vanilla QAOA
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N .
[V mix2) = (2 /2) ZSBZS(ﬁ1rV1rﬁ2;V2)el(FZS (Brvibar2))|s)

QUBO(q) Zaql+zz 49

i=1 j=i+l

Associate one qubit to each ¢;

\ 4

Initialize the registers in a
superposition of all possible

bitstring
-1
(2"2) " ) 1s)
S

[YYin =

4

Assign to each superposed solution
a phase proportional (arbitrary

parameter y4)
to its objective function value

W)psc1) = (ZN/z)_l zseiy1E5|S>

Phase separate again with new y,

Y e N

Mix the amplitudes by a transverse field
rotation exp(ifX) on each qubit
(arbitrary parameter)

|lp>mix(1)
-1 _
= (ZN/Z) Z BlS(ﬁl:Yl)elrls(ﬁl'Yl) |S>
S

After having repeated the algorithm p times do
measure in the computational base the expectation
value of the objective function

(lplollp)out = Zs Os|Bps|2

) B e <y TEPPER

N -1 .
Whps = (272) zsgls(ﬁl,yl)ez(rls(ﬁl,y1)+yzEs>|S)

¥

000
001
010
011
111
110
101
100
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Quantum Approximate Optimization Algorithm:
Example

Mix the amplitudes by a transverse field rotation

0) — — - - . exp(ifX) on each qubit (arbitrary parameter)
=l a2 V) mixa) 1
~ —~ —
D= =H FH EH % F _ (2" z B eiT1s(Buya) |
E 5 - & ( ) . 1s(B1,71) |s)

[Now if you measure, the probability of a bitstring ]

0) — - =t
. depends both on y and f in a non-linear way.
Initialization /
operator Phase separation operator

—_— H
dependent on a parameter -
Hadamard Gates p p . V4 EI- i E Vou need o
1 2" exp(ifZ17,)|s15,) = eV15152|s, s5,) {H K H } schedule the gates
hb)in = \/T_Nz |Solut10n(n)> \ ) 1_,_ | for every term of
n=1 Logical 2-qubit gate representing the Ising interaction { H o H_t theobjective
N 1 !
(2 s R CHH A} function!
S = — et"n|solution(n { e}
ps(1) N Ly
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Quantum Approximate Optimization Algorithm:
Example a ™\

Now if you measure, the probability of
0) — = — = - n — R E a bitstring depends both on y and 8 in

~ = ~ = a non-linear way.
0y 4 = H L x4 < L 4 = HXE It is exponentially difficult to predict or
= %] = e é = . oM
=) =) - -) - simulate the probability .
<L B2s(B1, 1, B2, Y2, - By ¥p)| to find the
0) — — — = - . B = optimal unknown solution s*
w))QAOA(p)

-1 _
= (ZN/Z) g BZS(ﬁl) Y1, :821 V2, ---;ﬁpr yp)elrls(ﬁl;yl;ﬁz;yz,---;ﬁp;)/p)|S>
S

For p — oo you can map this evolution to AQC; discrete becomes continuous; so, you know how to do it.
For finite p there is currently not a lot of guidance, big sector of research.
The search over the parameter space y and 8 is done heuristically (e.g., Gradient descent)
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QAOA for Constrained
Optimization Problems
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QAOA for Constrained Combinatorial Optimization

* Stay in the computational subspace!

Add phases again
with new y

Associate one qubit to each ¢;

Initialize the registers with a candidate Mix the system by generating a Assign to each superposed
superposition of the initial solution solution a phase proportional

solution found through genetic
algorithm or greedy search » with all possible others (arbitrary » (arbitrary parameter)
| W)in=1011010101100) parameter) to its objective function value
| W) mix=0t|011010101100)+ > Bi| b | W) mix=0te7Ein| 011010101100)
+ 2 BieEx] o)

DIFFICULT

Wmic= 25 Ps AN All 2V bitstrings
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The Problem of Hard Constraints

QUBO(q) Zaq,+zz 49

i=1 j=i+l
4 Penalty )
Function
2 q; = k > C Z q; — k
i i
\_ _J

Difficult to scale, does not
guarantee results, hardness
is large softness

Possible solution for these
constraints: XY -Mixers.

ctrical & Computer
) ENGINEERING

<y TEPPER

What you would want 1s to start from a
classical bitstring, and then be able to
“mix 1t” coherently 1n the subspace
where the constraint 1s satisfied

Enforcing the same number of bits=1 is the
same as doing two spin-flips

|001)  a|001)+b|010)

XY(2,3) XY(2,3)

a’ [ 001)+b> | 010)+¢c’ | 100)

1 0 0 0

10 cos % isin? 0

XY(0) = 0 isin g cos %2 0
0 0 0 1
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QAOA Applications

* Maximum Cut

* Max-SAT, Min-SAT, NAE-SAT
* Set Splitting

 MaxE3LIN2

* Max-ColorableSubgraph

* Graph Partitioning

*  Maximum Bisection

* Max Vertex k-Cover

* MaxIndependentSet

* MaxClique

*  MinVertexCover

¢ MaxSetPacking

* MinSetCover

« TSP

* SMS with various metrics and constraints

Objective Function: Soft Constraints
Feasible States: Hard Constraints
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Quantum Approximate Optimization
with Hard and Soft Constraints

Stuart Hadfield*, Zhihui Wang™**, Eleanor G. Rieffel®,

Bryan O’Gorman™", Davide Venturelli*+**, Rupak Biswas™
* Department of Computer Science, Columbia University, New York, NY
* Quantum Artificial Intelligence Lab., NASA Ames Research Center, Moffett Field, CA
** Universities Space Research Association, Mountain View, CA
TStinger Ghaffarian Technologies, Inc., Greenbelt, MD

ABSTRACT

Challenging computational problems arising in the practical world
are frequently tackled by heuristic algorithms. Small universal quan-
tum computers will emerge in the next year or two, enabling a sub-
stantial broadening of the types of quantum heuristics that can be
investigated beyond quantum annealing. The immediate question
is: what experiments should we prioritize that will give us insight
into quantum heuristics? One leading candidate is the quantum
approximate optimization algorithm (QAOA) metaheuristic. In this
work, we provide a framework for designing QAOA circuits for
a variety of combinatorial optimization problems with both hard
constraints that must be met and soft constraints whose violation
we wish to minimize. We work through a number of examples, and
discuss design principles.

CCS CONCEPTS

« Mathematics of computing — Approximation algorithms;
« Hardware — Emerging technologies; Quantum computa-
tion; « Theory of computation — Quantum computation theory;
Mathematical optimization;

advantage, and if so, how to design quantum algorithms that real-
ize such advantages. Today, challenging computational problems
arising in the practical world are frequently tackled by heuristic
algorithms, which by definition have not been analytically proven
to be the best approach, or even proven analytically to outperform
the best approach of the previous year. Rather, these algorithms are
empirically shown to be effective, by running them on characteristic
sets of problems, or demonstrating their effectiveness in practical
applications. As prototype quantum hardware emerges, this ap-
proach to algorithm design becomes available for the evaluation of
quantum heuristic algorithms.

For several years now, special-purpose quantum hardware has
been used to explore one quantum heuristic algorithm, quantum
annealing. Emerging gate-model processors, which are universal
in that, once scaled up, they can run any quantum algorithm, will
enable investigation of a much broader array of quantum heuristics
beyond quantum annealing. Within the last year, IBM has made
available publicly through the cloud a 5-qubit gate-model chip [13],
and announced recently an upgrade to a 17-qubit chip. Likewise,
Google [3] and Rigetti Computing [22], anticipate providing proces-
sors with 40-100 qubits within a year or two [18]. Many academic

TEPPER
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Alternating Operator Ansatz

Qp(B,7) = Um(Bp)Up(vp) - - - Um(B1)Up(71)

N

—1Hnm
8,7) = Qu(B,7)Is) 1€ €
/ Some unitary respecting: Some unitary

—1yHp

* Preserve the feasible subspace

.o . * Provide all-to-all nonzero transitions Iesp e-ctmg.: .
Some 1nitial state respecting: between all feasible states * s diagonal in the computational
« Itis a superposition of several solutions « Non-necessarily time evolution of a basis
in the feasible subspace local Hamiltonian * The spectrum of Hp encodes the

objective function

Hylx) = f(x)[x)
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Graph Coloring

X;.=1 if node 1 is colored by
color ¢
X;.=0 otherwise

< : .
@peEXe X counts the conflicts (soft constraint)

z X;c=1 enforces a unique coloring (hard constraint)

If both | X,c ) and | X,; ) are | 1) then introduce a : , :
ohase (phase separation angie) 1001)  al001)+b]010)  a’|001)+b | 010)+c | 10
1 0 0 O XY(2,3) XY(2,3) >
CPHASE() = |o o | o Lo o0 o
00 0 & xyY() = | f;fl‘g‘g ZCS;:Q% : (X1 Xe+Y1Ys,Z1 + Z5] =0
0 0 0 1

Work in a coherent superposition of hamming
weight 1 states (mixing in the feasibility subspace)

Y Hsctica & compute isTRI A p gy ‘. 0 o
( EN G I N E E R N G the Depa‘ t of! sesant 2. UL LuLiuavuld viy. Universities Space Research Association

Other requests for this document shall be referred to DARPA.
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Alternating Operator Ansatz

Node u is k
coloredbyec |, — Z Z I
X, =1 (uepepa=t !
Phase Separator (QUBO objective function)
4—kK 1 = ?;
Hf) = 1 ml + 4_1 Z Z (Zu,a 5 B Z,v’a‘ % Zu,aZv,a) -':
{uw}eE a=1
2

Initial state: " Babbush (2017)
. »  Jerstraete (2009)
W), = 22 ([100---0) +[010---0) 4+ [0---01)) 7 Fwe
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Engineering Mixing Operators

d
(enc) _
Hring — Z (XaXa-i-l 53 YaYa+1)
a Respects the Hamming

eXp(iHring) is difficult to implement Weight constraint

L\,\/) <=%=§j
3-coloring 4-coloring
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Advanced: Desing Freedom and Implementation Tradeoffs

d

You can't excute two Hin = X (XaXor +YoYor)  Wiieomirnnt
gates at the same time a
Sharing the same qllblt' eXp(iHring) is difficult to implement
n
Uni = [T USRS T BXplX X+ VoY)

Jp—

G ) : : v=1

S e N Un=[U,U:U<U-1 [U,U.U.Uc] [U,U:U<U-] [U,U,U<U
f’ﬁ — M_‘[1357][2468],[1357][2468]---
| v

7 1.“ ." | This couples only distance 2;

5 has to be repeated k/2 times

All these 2-qubit k?/2 gates need to be scheduled
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Other Mixers (controlled XY)

Finding the largest induced subgraph colorable by k colors

Node u is colored
by c or uncolored

(c=0)
Xy, c=1

() ENENERRNE

’—>HC = % Z ZU,O
v

<y TEPPER

XY

Still needs to be compiled to 2 qubit gates

All these gates need to be scheduled
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Mixers Navigation&Scheduling

In traveling salesman encoding

Y4

In single machine scheduling

/
kﬁ.— = f

Targets/Tasks

Tl "X
X,;=1 if city v is visited as jth X;t=1 if job j starts at time t
Z du,v (xu,jxv,j+1 + xv,jxu,j+1) C= Z Wi Z xj’t(t TP d])
{u,v}eE j=1 J (dj—pj)<t<h
(enc) + o+ + o+ — _ _ _
Hyg % 3w} = SuiSutiSu iSui + SuiSu St 1St B oy = s, 18 O S s 8018 Bl
(partitioned using edge coloring and parity | (But if we add release dates then we need
=(n-1)n%/4 mixers) controls on the no-overlap constraint)

(needs to be repeated n(n-1)/2 times for all-to-all)
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Zoology of Ansatze

(See Hadfield et al 2018 — «Quantum Alternating Operator Ansatz»)

Bitflip mixers XY mixers

« Maximum Cut « Max-ColorableSubgraph
« Max-SAT, Min-SAT, NAE-SAT « Graph Partitioning

« Set Splitting « Maximum Bisection

« MaxE3LIN2 « Max Vertex k-Cover

Controlled Bitflip mixers Controlled XY mixers

« MaxIndependentSet « Max-k-ColorableInducedSubgraph

« MaxClique « MinGraphColoring
« MinVertexCover « MinCliqueCover
« MaxSetPacking

« MinSetCover Permutation mixers

« TSP
« SMS with various metrics and constraints

QO B Yy TEPPER
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From the Quantum Approximate
Optimization Algorithm to a
Quantum Alternating Operator Ansatz

Stuart Hadfield*, Zhihui Wang™**, Bryan O'Gorman™", Eleanor G. Rieffel™,
Davide Venturelli™**, Rupak Biswas™

* Department of Computer Science, Columbia University, New York, NY
" Quantum Atrtificial Intelligence Lab., NASA Ames Research Center, Moffett Field, CA
** USRA Research Institute for Advanced Computer Science (RIACS), Mountain View, CA
t Stinger Ghaffarian Technologies, Inc., Greenbelt, MD
* Berkeley Quantum Information and Computation Center and Departments of Chemistry and Computer Science,

University of California, Berkeley, CA

September 12, 2017

The next few years will be exciting as prototype universal quantum pro-
cessors emerge, enabling implementation of a wider variety of algorithms. Of
particular interest are quantum heuristics, which require experimentation on
quantum hardware for their evaluation, and which have the potential to sig-
nificantly expand the breadth of applications for which quantum computers
have an established advantage. A leading candidate is Farhi et al.’s Quantum
Approximate Optimization Algorithm, which alternates between applying a
cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend
this framework to allow alternation between more general families of operators.
The essence of this extension, the Quantum Alternating Operator Ansatz, is
the consideration of general parameterized families of unitaries rather than only
those corresponding to the time-evolution under a fixed local Hamiltonian for
a time specified by the parameter. This ansatz supports the representation of a
larger, and potentially more useful, set of states than the original formulation,
with potential long-term impact on a broad array of application areas.

Universities Space Research Association
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Brief intro to NISQ Era Quantum
Computers available today
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Superconducting: Transmons

A Quantum Engineer’s Guide to Superconducting Qubits

. https://arxiv.org/pdf/1904.06560.pdf
P. Krantz!2!, M. Kjaergaard?, F. Yan!, T.P. Orlando?, S. Gustavsson?!, and W. D. Oliver!-: ps:// a/pdf/l D

£t \\

Tutorial: Gate-based superconducting quantum computing
Sangil Kwon,1-®) Akiyoshi Tomonaga,!'2 Gopika Lakshmi Bhai,’:2 Simon J. Devitt,? and Jaw-Shen Tsail:2

https://arxiv.org/pdf/2009.08021.pdf

If two superconductors are separated by a thin barrier, their
wavefunction communicates and creates a tunneling current with

Qubit Energy (£)

non-linear properties \
(Josephson Effect; Josephson Junctions - Phys. Lett. 1. 251 - 1962) e : EE—
__________ Phase Difference A¢
superconductor superconductor l(’ L ‘: :/ \: LEADING QUBITS DESIGN
Gy e | L L e
neulator | o p = Ability to be coupled to other
Ly or normal Ly > Eﬂ"\ : B transmons.
electrons metal electrons : : g e X = Absorb/Emit in microwave
| ' Transmons region (Ghz)
'“——-/  (e.g. Google, Intel,

IBM, Rigetti)
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Superconducting: Vendors

<|l|

rigett Google

Current: 127 IBM Eagle Current: 80 M-1 Current: 72(53)
202 o
Roadmap: 433 (2022); 1121 (2023) Roadmap: 336 (2023) 1000+ (2025) ggz??a§£e1;o§(caé3ug; %“if:fd"s"’d
Basis gates: CX, ID, RZ, SX, X Basis gates: RX, RY, RZ, CPHASE, XY gates: RX, RY, R,
X QxQ QxQ QxQ Ox
QxQ OxQ QxQ x‘ Qx X
x Ox’ QXQ Qx’ Ox‘ QxQ
QxQ Ox‘ x‘ Ox Qx‘ 3 X
N
OxQ X x’ 0x Qx’ Qx
x‘ Qx QxQ x’ QxQ QxQ
0x X Qx’ QxQ Qx 0x
CPHASE X X X X X X
Lloo o 1 0 0 0
1 0 0 0 . 0 cosf —isinf O
916 o XY (3,0) = | ° cos(g) isin(§)e’ 0 fSim(0, ¢) = (0 —isin® cos® 0 )
© 061 0 10 dsin()e™® cos(§) 0 0 0 0 e
i 0 0 0 1
O 0 0 e
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Neutral Atoms: analog simulators

From: University of

Rydberg Atom @ Ground State Atom Melbourne . hQ( ) CL‘
@ Rydberg Atom H(t) - Z 9 g; + Z
. _© ® i J<z
(] ‘. ®
® oo0 o ® A . . . .
> . o n; = (1 + o07)/2 Ising Hamiltonian
. b
e 5 _°
core with +1 charge o © Y ®
o | ¥ - y..Y . .
ol e Hint = 2 E ( o +0; 3) XY Hamiltonian
electron with -1 charge ‘ ’L;é]
Energy
Atoms that allow high-orbital occupation (Rydberg), -
interacting through Van-Der-Waals electrostatic interaction, \ngad
are effectively implementing “Ising” or “XY" between two 'T‘Q Cs 1/6
computational states. Irr) P e )
Pulser: An open-source package for the design of pulse ' I Irr)
sequences in programmable neutral-atom arrays 25(lam) + Ira)) & (19m) +1ra))
PR . Llnll:ar'u T
Henrique Silvério*, Sebastian Grijalva®l*, Constantin Dalyac!, Lucas Leclerc!, Peter J. Karalekas?,
Nath:n Shammah?, Mouratd Bejilf Louis-Paul Ijen:yl, anc)il Loic Henriet! ' |=LI|'| IE—— |gg> | (R F—7)
Rgiockade Rij
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Neutral Atoms: processor architectures, vendors and
results

/

Current technology allows to place ) . ool
atoms in arbitrary 3D structures — but PoE.E BEee PTG O : .‘

the laser excitation triggering dipole S

H H H HIR " COMPUTING INC.

interaction is still “global” on a large PASQAL

part of the processor.
Current: 256 quantum

I Uit MIT News. analog (rubidium) Current: 100 qubits
November 3, 2016 soon on AWS (rubidium) available now
Roadmap: 1024 QPU on CINECA, 300 qubit in
by 2024 dev (Microsoft Azure)
Roadmap: 1000 qubits in
2023

Note: Coldquanta and Atom Computing are
e Torus (120 sites) f Eiffel tower (126 sites) focusing on digital guantum computing with
Rydberg (cesius, strontium) — no product yet.

Barredo, D., Lienhard, V., de Léséleuc, S.,
EIectncaF‘gll‘_ang &Browaeys A. Nature 561, 79-82
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lon Trap Processors: 1D dipole-dipole architecture

Linear trap holds the ions (ytterbium) in place
via oscillating fields (paul trap) — only 1D,
currently 32 (max ~100 ions) separated few

) IONQ

Native Gates:

Mmicrons.

0 e = Lasers displace atoms ~nm induce dipole-
GPI(¢) LW 0 ] dipole interaction in arbitrary pairs of qubits.
1 1 e Gate time 10-100 us; Fidelity *99+% - full
Ze . . . . . . -
GPI12(4) 7 [_ieiqﬁ 1 ] connectivity but parallelization is difficult from
the quantum control point of view.
—i6/2
Virtual Z(60) [6 2.8/2]
0 e
Q IONQ
/ cos(x) 0 0 —isin(x) ) Alerelolle -
B 0 cos(x)—isin(x) 0 g oo
XX00 = 0—isin(y) cos(x) 0 £ oo
\ —isin(x) 0 0  cos(y) § o .
—~RY (vE)H HRX(—sT)HRY (—vg) 2022 2023 E E 2026 2027 2028
= XX (sT)
g RX(—vs%)

Electrical & Computer
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lon Trap Processors: Quantum Charge Coupled Device (QCCD)

Q QUANTINUUM

Same as ion-Q but the traps are designed to have regions of

movement of ions, and regions of interactions. Motional
mode are not exploited except by a small number of ions

when closeby with the others separated.

~512 qubits by 2025

Noisy Intermediate-Scale Quantum (NISQ) Era 2030

2020

Model H1

Fault-Tolerant Quantum Computing

Model H2 Model H3 Model H4 Model H5

Parameters min typ max min typ max
General
Qubits 20 12
Average depth-1 circuit time' 28 ms 27 ms
Connectivity All-to-all All-to-all
Parallel two-qubit operations 5 3
Errors
Single-qubit gate infidelity 2x107° 5x107° 3x10™* | 2x107° 5% 1075 3x107*
Two-qubit gate infidelity 2x1073 3x1073 5x1073 | 2x1073 3x1073 5x1073
State preparation and 2x1073 3x1073 5x1073 | 2x1073 | 35x103 | 6x1073
measurement (SPAM) error
Memory error per qu!t at 1x107* 4x107* 1x103 | 1x107* 4x107* 1x1073
average depth-1 circuit
Mid-circuit measurement 5x1075 1x107* 5x107* | 5x10°° 1x107* 5x107*
cross-talk error

6 i e 45 00
cos— —ie ¥ sin-
_ o 5 o\ O ]
U, (@)= iCsrbiinedp=lll . # o ., 2| Native Gates
—ie'? sin cos
_ia Operation Duration(us)
R,() = e—iZ A 2 — (€ /2 .O Qubit initialization 10
2 0 el /1/ 2 Qubit measurement (high-fidelity) 120
Qubit measurement (low crosstalk) 60
Cooling stage 1 (Doppler) 550
1 0 0 O Cooling stage 2 (Axial and Radial SB) 850
T o5 0 i 0 0 Cooling stage 3 (Axial SB) 650
ZZ() =e v /4Z®Z = 0 0 i 0 SQ 7/2 time 5
TQ gate 25
ik O F Operati Duration (:s)
peration uration (us
EENCCEcCGEEE 0 EEE 0 EEE 0 EEE HJU:IO:@:E R 58
(1T TSI T T TNSRSURERY T  TSSSRIRY T | TSISERRNteY | | TRRSRSIOR [ | TSDSSESE [ [ DTLT T 1 I shift
. . . I 2
Linear Transport (physical shuttling) el
SWAP Operation (physical out-of-plane swaps) zplit/ Shribing ;?E
Wap

Electrical & Computer

ENGINEERING
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QAOA in the "Real World”
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The Flexible Designh of NISQ Quantum Optimization
Algorithms

Vanilla QAOA (Fahri 2014) and the QAOAnsatz Recent Review Articles:
(Hadfield 2017) were just the start of the field of o _ _
d ¢ Optimization A h Noisy intermediate-scale quantum (NISQ) algorithms
modern Quantum Optimization Approaches Bharti et al. (Jan 2021) — arXiv:2101.08448
Variations: Variational Quantum Algorithms

Cerezo et al. (Dec 2020) — arXiv:2012.09265

Output Ega
Dopts Bopt
Egra = O (Sopi- Oopt)
)

nnnnnnn

* Incomplete/Approximate: e.g. mixing of a limited

number of variables randomly selected.
ols8 (iapa)

= Adaptive: e.g. changing the circuit at runtime based on
parameter exploration.

= Unstructured: e.g. the cost function could be evaluated
only by classical hardware and is not in the ansatz, like
learning in a neural network.

= Overparametrized: e.g. some gates might have offset
angles

= Digital-Analog: i.e. global pulsing techniques that
generate multi-qubit long range interactions. —

(K) Elehcltaclall\l 8(ECEoar l\ulteGr - 'I T E P P E R @ Universities Space Research Association
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A Circuit View of QAOA algorithms

Measurement..

IDEALIZED QUANTUM CIRCUIT A &{\ GATE
What is the best way to express the unitary transformation B &)

that implements the algorithms? ¢
(you cannot write the matrix)

GATH | GATH

SYNTHESIS 1 >
.. iIn term of the natively implementable gates?

COMPILATION (PARALLELIZATION)
.. Minimizing the duration of the execution of the circuit?
Or the total infidelity of the computation?

(K) EleNCtaclallq 8(ECEOISI I{it&r - 'I T E P P E R @ Universities Space Research Association



Carnegie Mellon University

The Gate Synthesis Problem Barenco et al.
Quantum Circuits can be composed by single (1995)
and two-qubit gates of universal set™* Kraus, Cirac
CNOT, Ry(q) and R,(a) (2001)

Vatan, Williams
Each single qubit gate can be decomposed by (2003)
single qubit rotations.
Ul=R,(a) Ry(b) R,(g) elf % ~ A P B O— A b

U =

Each two qubit gate 1s reversible and it 1s 1 A, T c é D T A, b
representable by a Unitary Matrix.

Maximum number of elementary 1-qubit gates: 15

R, gates can be «virtually» compiled. Maximum number of CNOTs: 3
(McKay 2017 and refs) Maximum depth assuming Ry, R, and
* active research to natively support multi-qubit gates simpliﬁcations: 11

(&) EeNCtaclallq 8(ECEOIS\ I{iteGr - 'I T E P P E R @ Universities Space Research Association



SWAP-Compilation (rewew)

Performance of algorithms in NISQ
will depend on aspects such as gate
fidelities, parallelization, 1dle time,
crosstalks..

Gue rreschi and Park (2018). Two-step approach to scheduling
quantum circuits. arXiv preprint arXiv:1708.00023.
Different Metrics to optimize correlate

Khatri, Sumeet, et al. "Quantum assisted quantum

to final perfOrmance: compiling." arXiv preprint arXiv:1807.00800 (2018).
* Total Quantum Factor Li, G., Ding, Y., & Xie, Y. (2018). Tackling the Qubit Mapping
° Quantum Volume Problem for NISQ-Era Quantum Devices. arXiv preprint

arXiv:1809.02573 (2018).

Number of Two-Qubit Gates
Oddi, Angelo, and Riccardo Rasconi. "Greedy Randomized Search

Makesp an for Scalable Compilation of Quantum Circuits." International
Conference on the Integration of Constraint Programming,

Artificial Intelligence, and Operations Research. Springer, Cham,
(2018.
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Example: MaxCut

S.=+1 | Defines the cut

1
U = 5 Z (1 — 31'5_7') Counts the edges in the cut Ups=ﬂ<jk> EXp(IszZk)

(i,J)EE

ziXi Mixes the two partitions UM = HJExp(|gXJ)

Interaction graph obtained from
quadratic objective function (MAXCUT)

PS1 MX PS2 . Every edge is a gate that needs to be
P-S(q1,q1)  MIX(q1) P-S(q1, q1) executed (in arbitrary order)
P-s(q1,05)  Mmix(gz)  P-S(a1.4s) - The same graph has to be executed
P-Slas,a1)  mix(g,) PS8 multiple times (p rounds).
P-S((]g,(]7) P'S((IBa(ﬁ) . p
bsangy X)) g0+ Every qubit has to complete all the gates of
psgear)  MX6) ps(ge,qr) round p before being involved in p+1
P-S(qs, q6) MIX(qr) P-S(gs5, q6)
P-S(q1,q5) P-S(q1,95)
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Circuit Execution Schedule

Interaction graph

obtained from quadratic Initial assignment
objective function q; — n;
(MAXCUT) n, n, n,

e e e—@, o

* Every edge is a gate that needs to be executed
(in arbitrary order)

* The same graph has to be executed multiple
times (p rounds).

* Every qubit has to complete all the gates of
round p before being involved in p+/

(() EleNCtaclallq 8(ECEOIS\ I{iteGr - 'I T E P P E R @ Universities Space Research Association
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Circuit Execution Schedule

U Exp(10Z,Z,) Z7-Evolution Gate
L

O—1 Zo

44

A
I
>
[
A
[
Ni-e
A
|
>
SIE
N
4
>
|3
A
SIE
N
A
SIE
>
(N1
A
Bl
|

Duration 21,+47t,

S X
I

X
.
.
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Circuit Execution Schedule

r

SWAP |¥) ; <> |0)

From Unidirectional

CNOTs to SWAP
N T _ elrtelde
T IRt
N N
x|\ A X =\ 17 =147 A7 =l 14X =47 =
T 2 2 2 ™ 2 2 T
A Z wlAX <\ Z st 7 A Z s A X =17 = l Z sl dX =17 17 | 1Z s AX = |7 |
%72 2 731 4n T2, 2 e = > A W2 2 /2
CZ X CZ X CZ
X e D e D X Duration 3t,+47;
I D e D e N e
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Circuit Execution Schedule

SWAPS can also be
inserted as part of

the UZZ interaction
without the need to
be sequential.

SWAP+ZZ-Evolution &? ZOJ%

Gate
\/ \/ \/ ~/
ZkHx -z @ZXngg
~_ / [ W sig /4 7, N2
— Gy — X_% — g A 7 —X_% — ziz —Z —X_% 1 Z . X_% {7 -

o [ v e e e we - Duration 31,+41; (same as SWAP)
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Circuit Execution Schedule

fast P-S (1=3)
slow P-S (1=4)
Swap (1=2)

Benchmark presented at ICAPS17

Objective: finding the makespan minimizing Gantt Schedule for p=1, p=2, N=8, N=21
— — — -

_,P'H‘Gz
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Circuit Execution Schedule

44
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Circuit Execution Schedule

123456738
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Circuit Execution Schedule

,?*#"Gl—i

1 23456 78
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Circuit Execution Schedule

1 2345678 91011 12
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Circuit Execution Schedule

- -
All actions of round 1 are completed - qubit can be mixed.
Qubit 1 can start participating to round 2.

= B B B B B

o

w N W N —_

=

=
=

12345678 910111213
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Circuit Execution Schedule

_—jE_HEEEZZJI

E::j

1 2345678 91011 12 1314151617181920212223242526272829303132333435

@ Universities Space Research Association

c__l

E__jl ] |

“ﬁ?

<y TEPPER

=l
E=

E

Carnegie Mellon University




Carnegie Mellon University

Circuit Execution Schedule

qds;

.\.
q
P-S(3,7) is fast on ny, N4 E
P-S(3,7) is slow on ng, ng n4¢ How to obtain these schedules efficiently?
E Classical planning software is useful, and
nb this is an active research field.
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Why Hardware Efficiency

Hardware Efficiency is important for NISQ devices because:
* |t increases quantumness, leading to possibly supreme performance
= Faster circuit execution impact overall performance (speed/quality tradeoff)

MaxCut QAOA on native graph : Sanity checks, detection of correlation

(no swaps required, no XY gates) !oetween performance and fidelity or other
improvements

Y'Yy

Init PS mix — — —

MaxCut QAOA on fully connected .
graphs (swaps required, XY for .
compilation) L - -
Swap network depth
N with N(N-1)/2 gates

. . See Kivlichan Phys.Rev.Lett 120,
Problem: SWAPS are crazy expensive in the NISQ Era 110501 (2018) and O'Gorman et

al. ArXiv:1905.05118 (2019)
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Resources: NISQ Computing ArXiv Digest
& SQMS ArXiv Digest

= 1000+ subscribers
= ArXiv Digest ~70 papers a month
= |nterfaced with http://metrig.info

q .
= NISQ Experiments mektrig

= Analog/Quantum

Monthly Newsletter on

. Annealing
NISQAQplledQuantum « Atom Based
Computing = Photonic
https://riacs.usra.edu/ = Superconducting
guantum/nisqgc-nl = Other

= NISQ Algorithms
= Benchmarking; Software
Tools; Compilation

[ NYSTEC] = Machine Learning

= Optimization
= Simulation
= Other

€ ERGNEERRVG <y TEPPER

YOUR

Papers in the Newsletter

60 M Experimental Papers
trend
M Theoretical Papers

trend

o
o

N
o

Number of featured papers

Time (Newsletter edition)
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Amazon Braket for QAOA

https://github.com/aws/amazon-braket-

examples/tree/main/examples/hybrid quantum algorithms

Carnegie Mellon University

Service dashboard

/QAOA

Welcome to Amazon Braket

# main v+ amazon-braket-examples / examples / hybrid_quantum_algorithms / QAOA / Go to file Example Jupyter notebooks [4
Explore real world examples of all
=) shpface update examples to use Aspen M-2 device (#180) ... 8849796 on Aug 12 YO History

features offered by Amazon Braket.
[ QAOA braketipynb update examples to use Aspen M-2 device (#180) 2 months ago
[ hybrid_quantum.png Folder structure changes, add notebook tests, format files 2 years ago
[ utils_classical.py Fix some spelling (#101) 10 months ago PY
@ utils_gaoa.py feat: remove s3 folder configuration and upgrade aspen references to ... 8 months ago q B ra I d HAQS

https://qbraid.com/haqs/

) EEEERRS <y TEPPER

qBraid is incredibly excited to host their very own hackathon
where users will hack for 2 weeks to achieve the highest score on

our leaderboard.

If you’re a software developer and are interested in AI/ML and

want to dip info QML this is a perfect opportunity to try out

quantum computing.
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