47-779 / 47-785, 18-819F course syllabus - Fall 2022
Lecture 0: Course Overview.
Slides
Lecture 1: Review of Linear Algebra I.
Slides
Lecture 2: Review of Linear Algebra II.
Slides
Lecture 3: Introduction to Machine Learning.
Slides
Lecture 4: Deep Learning.
Slides
Lecture 5: Convolutional Neural Networks.
Slides
Lecture 5.1: Convolutional Neural Networks Tutorial.
Slides
Lecture 6: Mathematical Programming.
Slides
Lecture 7: Graver Augmented Multiseed Algorithm (GAMA).
Slides
Lecture 8: Ising and QUBO.
Slides
Lecture 9: Quantum Annealing, Quantum-Inspired Heuristics, Benchmarking, and Parameter settings.
Slides
Lecture 10: Axioms of Quantum Mechanics.
Slides
Lecture X: Subscribing to AWS Braket, DWave, IBM Qiskit and USRA RIACS.
Slides
Lecture 11: Introduction to Quantum Gates and Circuits.
Slides
Lecture 12: NISQ Optimization.
Slides
Lecture 13: First Look at Quantum Algorithms Deutsch’s Problem.
Slides
Lecture 14: Quantum Fourier Transform.pdf.
Slides
Lecture 15: Quantum Phase Estimation and Linear Algebraic Systems.pdf.
Slides